The use of fish cell lines in genoecotoxicology assessment

Sylvie Bony, Aude Kienzler, Xavier Tronchere, Alain Devaux

USC IGH, UMR CNRS 5023 LEHNA ENTPE- Vaulx en Velin, France bony@entpe.fr

BACKGROUND: a crucial awareness...

Man-made contamination of aquatic environment raises the necessity to assess hazards and risks for aquatic organisms including **fish**

Many levels should be covered:

- Basic (eco)toxicological research
- Environmental surveys & monitoring (WFD 2015)
- Regulatory toxicity tests

Thus, ethical, technical, scientific and economic reasons support the development of *in vitro* methods for ecotoxicology studies

Fish cell lines: ALTERNATIVE SYSTEMS IN ECOTOXICOLOGY

Adapted from Bols et al. 2005

Main advantages:

- More than 150 fish cell lines stemming from over 30 different species
- Retain specific characteristics of fish: ectothermia, resistance to osmotic variations, metabolic, biotransformation and DNA repair capacities, tissues such as gill.
- Simple to work with compared to mammal cell lines.
- Fits the 3Rs concept: reduce, replace & refine the use of vertebrates

DNA: Potential target for xenobiotics

Why does genotoxicity testing warrant inclusion in hazard and risk assessment processes?

- About a third of contaminants in the aquatic environment are suspected to be directly or indirectly genotoxic
- A genotoxin alters the genetic material at non-lethal and non-cytotoxic concentrations
- Genotoxins often have delayed effects (month, year...) which are crucially important at population and community levels

GENOTOXINS have high ecotoxicological relevance in situation of chronic exposure to low doses and to multiple contaminants

How can fish cell lines help?

• For pure chemicals and complex matrix genotoxic hazard evaluation:

Alternative or in addition to bacterial genotoxicity testing systems such as Ames, Umu C, SOS chromotest, Rec-assay

- To study mechanisms of genotoxicity
- To identify/set up new genotoxicity biomarkers

Genotoxicity Biomarkers

Interest of a **multi-biomarkers approach** to optimize the hazard and risk assessment in multi-contamination scenario

Primary DNA damages: the need for a sensitive tool to detect low contamination levels

The Alkaline Comet assay: a sensitive and versatile tool to quantify single and double DNA strand breaks

Measure the DNA breakdown at individual cellular level Based on electrophoretic properties of DNA in agarose at pH>13

Quantification of the level of DNA breaks by Image analysis

Sensitivity and specificity of the assay can be improve by the use of an additionnal step using restriction endonuclease

*Mechanistic purposes: specific enzymes (OGG1, Endo III, Alk A, T4endoV)

*Improved sensitivity: Formamido pyrimidine glycosylase (Fpg)

*DNA methylation level: methyltransferases (Hpall, Hhal, McrBC)

Need for a sensitive tool to detect low levels of primary DNA damage in fish cell lines

Sensitive genotoxicity testing in fish cell lines using the Fpg-modified comet assay

RTG W1 exposed to the model genotoxicant MMS (alkylating agent)

ROS mediated genotoxicity: cadmium

With Fpg modified Comet Assay

2 orders of magnitude improvement

Vineyard pesticides: the case of Diuron

Environmental Risk assessment for the MITOTANE, an anti-cancer drug

- Used against metastatic adrenal corsical carcinoma
- Daily dose: 6 12 g / day / patient
- Low bioavailability: 65% excreted without metabolization
- Mechanism of action and toxicity almost unknown
- Structure very close to that of DDT
- High bioconcentration factor: 7330
- Long half-life: 190 days

Mitotane= o-p' DDD

p-p' DDT

The risk assessment scenario

Predicted Environmental Concentration = 46. 10⁻¹² g/L

Predicted No Effect Concentration = 72.10⁻⁹ g/L

PEC/PNEC <<< 1

Predicted intra-fish concentration (Body residue): **340. 10**-9 **g/L** (PEC x BCF)

Mitotane PLHC1 cell line cytotoxicity

Mitotane PLHC1 cell line genotoxicity (Fpg-modified comet assay)

First effect concentration: 50ng/L << 340. 10⁻⁹ g/L

DNA repair activities: the need for a simple and sensitive assay

Do fish cell lines have DNA repair activities?

Evaluation of the DNA repair capacitiesModified version of the Alkaline Comet assay

Applied to the two main repair mechanisms resulting in SSB:

Base <u>Excision</u> Repair (BERc) that recognizes base oxydation, alkylation, hydrolysis, deamination...(substrate DNA = 8OH Gua)

Nucleotide <u>Excision</u> Repair (NERc) that recognizes bulky adducts, helix distorting lesions such as pyrimidine dimers, 6,4 photoproducts...(substrate DNA = pyrimidine dimers)

BER activity in RTG and RTL W1 cell lines

Ro19-8022 + light

8OH DGua, a model lesion for BER

Conclusions

- There is a clear need for alternative *in vitro* methods in ecotoxicology
- Permanent fish cell lines can represent a very useful tool particularly in the field of genotoxicity hazard evaluation
- They are easy to handle and are sensitive when using modified versions of comet assay to assess primary DNA damage and DNA repair capacities

and perspectives ...

- Application to genotoxicity assessment of environmental samples
- Transfert of the new biomarkers in vivo
- Carry on to explore new genotoxicity biomarkers (epigenetic changes, GADD reporter cell line)

